Melatonin treatment reduces astrogliosis and apoptosis in rats with traumatic brain injury
نویسندگان
چکیده
OBJECTIVES Melatonin is known as an anti-inflammatory agent, and it has been proven to exert neuroprotection through inhibition of cell death (apoptosis) in several models of brain injury. Secondary injury following the primary traumatic brain injury (TBI) results in glial cells activation, especially astrocytes. In fact, astrocyte activation causes the production of pro-inflammatory cytokines that may lead to secondary injury. Since most TBI research studies have focused on injured neurons and paid little attention to glial cells, the aim of current study was to investigate the effects of melatonin against astrocytes activation (astrogliosis), as well as inhibition of apoptosis in brain tissue of male rats after TBI. MATERIALS AND METHODS The animals were randomly allocated into five groups: sham group, TBI+ vehicle group (1% ethanol in saline) and TBI+ melatonin groups (5 mg/kg, 10 mg/kg and 20 mg/kg). All rats were intubated and then exposed to diffuse TBI, except for the sham group. Immunohistochemical methods were conducted using glial fibrillary acidic protein (GFAP) marker and TUNEL assay to evaluate astrocyte reactivity and cell death, respectively. RESULTS The results showed that based on the number of GFAP positive astrocytes in brain cortex, astrogliosis was reduced significantly (P<0.05) in melatonin- treated groups (no dose dependent) compared to the vehicle group. Furthermore, based on TUNEL results, melatonin treatment considerably reduced the number of apoptotic cells (P<0.05). CONCLUSION In total, the present findings suggest that melatonin treatment following TBI diminishes astrocyte reactivity and neuronal cells apoptosis in brain cortex in the rat model.
منابع مشابه
Melatonin treatment reduces astrogliosis and apoptosis in rats with traumatic brain injury
Objective(s):Melatonin is known as an anti-inflammatory agent, and it has been proven to exert neuroprotection through inhibition of cell death (apoptosis) in several models of brain injury.Secondary injury following the primary traumatic brain injury (TBI) results in glial cells activation, especially astrocytes. In fact, astrocyte activation causes the production of pro-inflammatory cytokines...
متن کاملHippocampal Astrocyte Response to Melatonin Following Neural Damage Induction in Rats
Introduction: Brain injury induces an almost immediate response from glial cells, especially astrocytes. Activation of astrocytes leads to the production of inflammatory cytokines and reactive oxygen species that may result in secondary neuronal damage. Melatonin is an anti-inflammatory and antioxidant agent, and it has been reported to exert neuroprotection through the prevention of neuronal d...
متن کاملRole of melatonin receptors in the effect of estrogen on brain edema, intracranial pressure and expression of aquaporin 4 after traumatic brain injury
Objective(s): Traumatic brain injury (TBI) is one of the most common causes of death and disability in modern societies. The role of steroids and melatonin is recognized as a neuroprotective factor in traumatic injuries. This study examined the role of melatonin receptors in the neuroprotective effects of estrogen. Materials and Methods: Seventy female ovariectomized Wistar rats were divided in...
متن کاملMelatonin reduces traumatic brain injury-induced oxidative stress in the cerebral cortex and blood of rats
Free radicals induced by traumatic brain injury have deleterious effects on the function and antioxidant vitamin levels of several organ systems including the brain. Melatonin possesses antioxidant effect on the brain by maintaining antioxidant enzyme and vitamin levels. We investigated the effects of melatonin on antioxidant ability in the cerebral cortex and blood of traumatic brain injury ra...
متن کاملMobilization of stem cell with granulocyte-colony stimulating factor promotes recovery after traumatic brain injury in rat
Introduction: This study was designed to investigate the effects of granulocyte colony-stimulating factor (G-CSF) administration in rats for 6 weeks after traumatic brain injury (TBI). Methods: Adult male Wistar rats (n = 30) were injured with controlled cortical impact device and divided into four groups. The treatment groups (n = 10 each) were injected subcutaneously with recombinant human...
متن کامل